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Abstract Recent high impact wildfires and droughts in California and Nevada have been linked to
extremes in the Evaporative Demand Drought Index (EDDI) and Standardized Precipitation
Evapotranspiration Index (SPEI), respectively. Both indices are dependent on reference evapotranspiration
(ET0). Future changes in ET0 for California and Nevada are examined, calculated from global climate model
simulations downscaled by Localized Constructed Analogs (LOCA). ET0 increases of 13–18% at seasonal
timescales are projected by late century (2070–2099), with greatest relative increases in winter and spring.
Seasonal ET0 increases are most strongly driven by warmer temperatures, with increasing specific
humidity having a smaller, but noteworthy, counter tendency. Extreme (95th percentile) EDDI values on the
2‐week timescale have coincided with recent large wildfires in the area. Two‐week EDDI extremes are
projected to increase by 6–10 times during summer and 4–6 times during autumn by the end of the century.
On multiyear timescales, the occurrence of extreme droughts based on 3‐year SPEI below the historical fifth
percentile, similar to that experienced during the 2012–2016 drought across the region, is projected to
increase 3–15 times by late century. Positive trends in extreme multiyear droughts will further increase
seasonal fire potential through degraded forests and increased fuel loads and flammability. Understanding
how these drought metrics change on various climate timescales at the local level can provide fundamental
information to support the development of long‐term adaptation strategies for wildland fire and water
resource management.

Plain Language Summary Since the start of the 21st century, California and Nevada have
observed extreme wildland fires and droughts that have caused devastating impacts to ecosystems and
society. A common feature of these events has been very high atmospheric evaporative demand—the
“thirst” of the atmosphere—which has largely been driven by increased air temperatures caused by
anthropogenic climate change. This study examines projected changes in evaporative demand, which of the
input variables are causing those changes and how the frequency of extreme wildfire potential andmultiyear
droughts will change. Evaporative demand is found to increase during all seasons, and increased
temperatures drive most of that change. The likelihood of extreme wildfire potential based on 2‐week
periods of elevated evaporative demand during summer and autumn increases substantially. A climatic
water balance based on precipitation and evaporative demand indicates extreme 3‐year droughts that hold
potential to deplete regional‐scale water supply also become much more likely. Future adaptation
planning efforts for wildfire management agencies, forest management, and water resource managers
should account for a greater likelihood of more extreme events.

1. Introduction
Wildland fires and droughts in California and Nevada have had devastating impacts on natural resources,
ecosystems, and society. In the last decade, extreme events with unprecedented impacts have occurred
including the 2012–2016 drought (e.g., Griffin & Anchukaitis, 2014; Lund et al., 2018; Shukla et al., 2015;
Swain, 2015; Williams et al., 2015) and a series of catastrophic wildfires in 2017 and 2018 (Brown et al.,
2020; Nauslar et al., 2018, 2019). A common thread in these recent events is the increased likelihood of
exacerbated drought impacts and heightened fire potential due to increased air temperatures and
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evaporative demand (E0)—including that associated with anthropogenic climate change (e.g., Griffin &
Anchukaitis, 2014; Goss et al., 2020; Shukla et al., 2015; Williams et al., 2015, 2019).

Evaporative demand (E0)—the upper limit of actual evapotranspiration (ET) that could occur given unlim-
ited surface water supply (Hobbins et al., 2017)—has a strong connection to drought and wildfire potential in
the western United States (e.g., Abatzoglou & Kolden, 2013; Abatzoglou &Williams, 2016; Littell et al., 2016;
McEvoy et al., 2016) and globally (e.g., Dai, 2011; Vicente‐Serrano et al., 2010). In California and Nevada,
elevated E0 contributed to the 2012–2016 drought's severity (Hobbins et al., 2016; McEvoy et al., 2016;
Shukla et al., 2015; Williams et al., 2015) and to wildfire potential (Brown et al., 2020; McEvoy et al., 2019;
Nauslar et al., 2019). Although E0 is sometimes calculated from temperature alone, a physically based E0
formulation is critical to obtaining realistic estimates that include not only temperature changes but also
the wind speed, humidity, and incoming shortwave radiation components that drive land surface‐
atmosphere interactions and drying (Hidalgo et al., 2005; Hobbins et al., 2017). Reference ET (ET0)
calculated using the Penman‐Monteith equation (Monteith, 1965) is a physically based formulation of E0
that serves as the basis for the Evaporative Demand Drought Index (EDDI; Hobbins et al., 2016; McEvoy
et al., 2016) and has been recommended as the E0 component of the Standardized Precipitation
Evapotranspiration Index (SPEI; Vicente‐Serrano et al., 2010). While Hobbins (2016) has demonstrated
that the historical (1981–2010) sensitivity of ET0 to the drivers can vary regionally and seasonally,
assessments that examine the sensitivity of ET0 based on projected changes in the drivers are lacking.

A number of studies have looked at projected changes in ET0 and drought indices that use ET0 at global or
Contiguous United States (CONUS) scale based on coarse resolution Global climate model (GCM) output
(e.g., Cook et al., 2014; Dewes et al., 2017; Ficklin et al., 2016; Scheff & Frierson, 2014). More localized studies
in portions of California and Nevada for specific basins or counties using downscaled GCM data have also
been conducted (Huntington et al., 2015; Oakely et al., 2019). Using downscaled GCM data to develop
ET0 projections provides localized information about future fire potential and droughts that can highlight
regional differences that are less apparent using coarser scale GCM data.

Extreme EDDI values (greater than 95th percentile) have been found to occur simultaneously with start
dates of recent large and destructive wildfires in California (Brown et al., 2020; McEvoy et al., 2019;
Nauslar et al., 2019) and has been put into use by fire management agencies (McEvoy et al., 2019). In addi-
tion to the aforementioned case studies, McEvoy et al. (2019) compared EDDI to seasonally averaged fire
danger indices (ERC, 100‐, and 1,000‐hour fuel moisture) across California and Nevada for 1979–2015,
and results show EDDI strongly reflects the buildup of antecedent drought conditions also found in dead fuel
moisture. The multi‐scalar nature of EDDI (Hobbins et al., 2016) and ability to decompose into individual
weather drivers is appealing to fire managers who found added value when used in combination with tradi-
tional fire danger metrics (McEvoy et al., 2019). Abatzoglou and Kolden (2013) found ET0 to have good inter-
annual relationships to fire season total burned area in California. Several studies have examined climate
change impacts on fire weather and fire danger indices in the region (Abatzoglou et al., 2019; Brown
et al., 2004; Goss et al., 2020), but thus far, no studies have evaluated projected changes in extreme EDDI
days for fire danger applications.

Multiyear droughts, particularly those lasting three or more years, have the greatest impact on California
and Nevada water resources as even the larger reservoirs can become depleted causing water shortages for
agriculture and public use (Lund et al., 2018) with the most devastating impacts to rural communities that
rely on groundwater (Swain, 2015). Multi‐scalar drought indices that incorporate both precipitation and ET0
are better correlated to reservoir levels during droughts than indices only using precipitation, and levels in
large reservoirs are best correlated at timescales of 3–4 years (McEvoy et al., 2012). While changes in annual
SPEI have been examined globally (Cook et al., 2014), the occurrence of multiyear extreme droughts has not
been examined using SPEI. Previous studies on changes in multiyear droughts have found increases in dura-
tion of soil moisture droughts in the Southwest United States (Cayan et al., 2010) and increased frequency of
snow droughts in the western United States (Marshall et al., 2019).

This paper aims to build our understanding of how future changes in ET0 can impact wildland fire potential
and multiyear droughts in California and Nevada based on an ensemble of downscaled GCMs. Specifically,
we seek to quantify changes in extreme ET0 at short timescales for fire potential (2‐week EDDI) and long
timescales for sustained droughts (3‐year SPEI). We first examine seasonal changes in precipitation, ET0,
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and the drivers of ET0. Second, we look at changes in extreme EDDI days as a metric of changes in wildfire
potential. Finally, changes in multiyear droughts are assessed based on the 3‐year SPEI and Standardized
Precipitation Index (SPI).

2. Data and Methods
2.1. Daily Reference Evapotranspiration

To characterize historical changes in frequency of extreme EDDI days, daily ET0 data were obtained from
gridMET (Abatzoglou, 2013), which combines the North American Land Data Assimilation System version
2 and the Parameter Regression on Independent Slopes Model (PRISM) to produce continually updated
daily data at 4 km spatial resolution over CONUS beginning in 1979. ET0 is computed using gridMET tem-
perature, wind speed, specific humidity, and incoming shortwave radiation following the ASCE
Penman‐Monteith procedure (Walter et al., 2000).

Four Predictive Service Areas (PSAs), a management unit used by the National Interagency Fire Center and
Predictive Services for monitoring and forecasting fire danger as well as allocating resources for fire suppres-
sion, were used as spatial averaging domains to investigate both historical and future changes in ET0 and
precipitation. South Coast, Mid Coast to Mendocino (hereafter Mid Coast), and Northern Sierra PSAs were
used in California and Humboldt Basin PSA for Nevada (Figure 1a). All four PSAs have experienced large

Figure 1. Seasonal LOCA RCP 8.5 ensemble median percent change in ET0 for the late century period (2070–2099)
relative to the base period (1950–2019) in (a) winter, (b) spring, (c) summer, and (d) autumn. Blue boundaries in
(a) show Predictive Service Areas used in the study including (1) South Coast, (2) Mid Coast to Mendocino,
(3) Northern Sierra in California, and (4) Humboldt Basin in Nevada.
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and destructive wildfires both historically and recently (McEvoy et al., 2019). These regions also provide sur-
face water to large populations and/or major regional agricultural areas, making them ideal for studying
long‐term hydrologic drought. Daily gridMET ET0 spatially averaged to each PSA for the period
1979–2019 was extracted using Climate Engine (Huntington et al., 2017).

2.2. Monthly Reference Evapotranspiration and Precipitation

Historical multiyear droughts are characterized using monthly ET0 and Prcp fromWilliams et al. (2020) cov-
ering the period 1901–2018. This data set merges a number of observation‐based and reanalysis products to
produce a continuous timeseries over North America at 1/4° spatial resolution. For further details, see
Williams et al. (2020) supplemental material. Monthly data were spatially averaged over each PSA.

2.3. LOCA Projections

GCM simulations from the Climate Model Intercomparison Project version 5 (CMIP5; Taylor et al., 2012)
statistically downscaled using Localized Constructed Analogs (LOCA; Pierce et al., 2014; Pierce et al., 2015)
were obtained for California and Nevada from the LOCA database (http://loca.ucsd.edu). Daily data at 6 km
spatial resolution from historical (1950–2005) and future (2006–2099) LOCA runs for Representative
Concentration Pathway (RCP) 4.5 (supplemental material) and 8.5 were used. Climate variables of maxi-
mum temperature (Tmax), minimum temperature (Tmin), specific humidity (q; Pierce & Cayan, 2016), wind
speed (u), incoming shortwave radiation (Rd), and precipitation (Prcp) were examined. The full suite of
LOCA GCMs includes 32 models of which 10 were selected in previous studies as best suited to studies in
California and Nevada on the basis of performance over the historical era and independence in model line-
age (Cayan & Tyree, 2015; Pierce et al., 2018). The performancemeasures that were evaluated included accu-
racy in the global representation of air temperature, pressure, wind, and solar radiation patterns; western
U.S. regional evaluations of temperature, precipitation, sea level pressure, and (due to their teleconnected
importance to regional climate) El Niño/Southern Oscillation variability; and California state evaluation
of dry and wet regimes, heat waves, and cold snaps (Cayan & Tyree, 2015). Seven of the 10 GCMs retained
daily q, u, and Rd necessary to calculate ET0 and were used in this study: ACCESS1‐0, CanESM2, CNRM‐
CM5, GFDL‐CM3, HadGEM2‐CC, HadGEM2‐ES, and MIROC5. Gridded daily ET0 covering California
and Nevada was calculated using the ASCE Penman‐Monteith method (Walter et al., 2000) and archived
for both RCPs and historical and future periods. All future changes were calculated relative to a base period
of 1950–2019 and classified by early (2020–2039), mid (2040–2069), and late (2070–2099) 21st century.
A comparison of LOCA seasonal ET0 totals with gridMET shows that LOCA does well in capturing the
seasonal cycles and variability (supporting information Figures S1 and S2).

Seasonal changes relative to the base period for LOCA Prcp, mean temperature (Tmean), q, u, Rd, and ET0
were computed for early, mid, and late century. Changes are expressed as the percent difference from the
base period for ET0 and Prcp and absolute difference for other variables, for each future year and then aver-
aged over each of the three future periods. Seasonal timeseries (three‐month average for each year) for each
of the four PSAs described in section 2 were spatially averaged from the LOCA grids to examine the
seven‐model ensemble distribution for each variable.

A sensitivity experiment was performed on the seasonal ET0 timeseries to examine which of the four atmo-
spheric drivers is responsible for the greatest influence on future ET0 changes. For each PSA, daily Tmean, q,
u, and Rd climatology were computed using the base period. Next, ET0 was computed four times, each time
holding three of the four atmospheric drivers to the daily climatological values and letting the other driver
vary (e.g., Cook et al., 2014; Scheff & Frierson, 2014; Williams et al., 2015; Zhao & Dai, 2015). This was done
through the full LOCA time period (1950–2099), and seasonal ET0 values were summed from daily values.
Contributions to the total ET0 anomaly relative to 1950–2019 were estimated for each year and then aver-
aged over future periods (method detailed in Figure S3 and associated text).

2.4. Drought Indices

We examine both 2‐week and 3‐year drought indices in this work for wildland fire potential and long‐term
drought, respectively. The EDDI was computed following Hobbins et al. (2016) using a 2‐week timescale.
This short timescale can be used to examine rapid onset drought, or flash drought, and has been found to
be effective for fire danger monitoring (McEvoy et al., 2019). Both meteorological phenomena
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(e.g., frontal passage and downslope wind events) and persistent weather patterns lasting days‐to‐weeks
(i.e., blocking high pressure) impact fuel moisture and flammability and are reflected in the 2‐week
EDDI. Further, we find over 25% of seasonal burned area in summer and autumn occurs coincident with
extreme 2‐week EDDI days across much of the region (Figure S4). For each year, daily counts of 2‐week
EDDI exceeding the historical 95th percentile during summer (June–August) and autumn (September–
November) were found. Percentiles are relative to each day, not all days of the year. For gridMET, the entire
1979–2019 distribution was used to calculate EDDI. For LOCA data EDDI was computed using a fixed base
period of 1950–2019 to constrain the distribution to the observed past. Data for 2020–2099 were ranked rela-
tive to the base period and capped on the upper or lower end of the distribution. The number of days for each
year and season when EDDI exceeds the base period 95th percentile was calculated and then averaged for
each future period. Any given day above the 95th percentile is likely not independent from neighboring days
above this threshold given the serial correlation in the daily timeseries.

Multiyear droughts were examined using the SPI (McKee et al., 1993) and SPEI (Vicente‐Serrano et al., 2010).
SPI is a multi‐scalar drought index that considers only Prcp. SPEI incorporates the demand side of drought
by using the climatic water balance (Prcp − ET0) as input. Precipitation is the driving factor in multiyear
hydrologic droughts with elevated ET0 acting to exacerbate drought severity. We therefore use SPEI instead
of EDDI to examine the impact of ET0 on multiyear droughts. SPI and SPEI were standardized using a non-
parametric approach (Farahmand & AghaKouchak, 2015), which helps overcome the limitations of using
different distributions to fit different variables. This standardization method was adopted by Hobbins
et al. (2016) for EDDI and used for EDDI, SPI, and SPEI calculations in this study.

We computed 3‐year water year (36‐month ending September 30) SPEI (SPEI‐36) and SPI (SPI‐36) time-
series for each PSA using spatially averaged Prcp and ET0. McEvoy et al. (2012) found SPEI timescales of
30–60 months strongly correlated to interannual variability in large reservoirs in California and Nevada
with extreme low SPEI values tracking droughts and low reservoir levels. We therefore use a 36‐month
timescale to represent water supply droughts in the region. The U.S. Drought Monitor (Svoboda et al., 2002)
classifies extreme drought as third to fifth percentile and exceptional drought as <third percentile. We use
SPEI <fifth percentile to determine historical and future changes in extreme droughts. For historical SPI
and SPEI using data from Williams et al. (2020), 1901–2018 was used for the distributions at each PSA.
For LOCA SPI and SPEI we used 1950–2019 as the base period, and data for 2020–2099 were ranked relative
to the base period and capped on the upper or lower end of the distribution (same as EDDI). A long duration
aggregation window (36 months) is inherently serial correlated, and years below the fifth percentile are
often overlapping and not independent from one another. In addition to counting the number of values,
the overlaps were also counted to distinguish events (any overlaps) from single year values.

3. Results
3.1. LOCA Seasonal Changes

The seven‐model ensemble shows consistent increases in ET0 by the end of century (Figure 1 for RCP 8.5;
Figure S5 RCP 4.5; Table 1). Winter and spring show increases of >20% over large swaths of the domain
(Figures 1a and 1b, respectively), which is partially a function of the climatologically lower historical values
in these seasons. Summer ET0 increases 10–15% over much of the domain with greater increases in the
northern areas and a large area of lesser (5–10%) increases over southern areas (Figure 1c). Autumn changes
of 10–20% (Figure 1d) are more uniformly distributed over the region.

Precipitation changes (Figure 2 for RCP 8.5; Figure S6 RCP 4.5; Table 1) are less consistent than ET0 both
spatially and by season, similar to previous studies (e.g., Pierce et al., 2018). Winter (Figure 2a) shows
the most spatial coherence with increases over nearly the entire domain, with a large extent of >30%
and 45–60% + increases over Nevada. Spring (Figure 2b) and autumn (Figure 2d) show similar spatial
patterns where decreasing Prcp is found in California and southern Nevada and increases in central
and northern Nevada. Summer changes are noisy over nearly all of California and northwest Nevada
due to the Mediterranean climate and low (near zero for some locations) absolute values of Prcp during
this season. There is some evidence that future summer changes in precipitation in this region may be
associated with monsoon processes that are better resolved by finer spatial resolution dynamical down-
scaling, as opposed to statistically downscaled coarse‐resolution GCMs (Pierce et al., 2013).
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Focusing on autumn since it is a key fire season and the start of the transition to the wet season, late century
changes in Prcp, ET0, and the drivers of ET0 are shown in Figure 3 for the four PSAs. In addition to ensemble
median, the spread is also shown to highlight uncertainty in projections, which arises from both natural cli-
mate variability and model uncertainty. All four PSAs show increased ET0 with ensemble medians ranging
from 13% to 16% across the PSAs and increases in all ensemble members, despite a modest spread in mag-
nitude (Figure 3a). Changes in Prcp (Figure 3b) are more variable than ET0 changes. However, for all regions

Table 1
LOCA Ensemble Median Seasonal ET0 and Prcp Historical Climatology (1950–2019) and Late Century (2070–2099)
Changes Spatially Averaged Over the Entire Domain

ET0 and Prcp historical climatology and late century changes

Season ET0 climatology (mm) Δ ET0 (mm) Δ ET0 (%) Prcp climatology (mm) Δ Prcp (mm) Δ Prcp (%)

Winter 139 23 17 198 26 13
Spring 414 75 18 115 −13 −11
Summer 708 94 13 33 −6 −18
Autumn 343 50 15 92 −8 −9

Figure 2. Seasonal LOCA RCP 8.5 ensemble median percent change in Prcp for the late century period (2070–2099)
relative to the base period (1950–2019) in (a) winter, (b) spring, (c) summer, and (d) autumn.
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except for Humboldt Basin most ensemble members show drying. For Humboldt Basin, note that natural
internal climate variability in regions where the mean change is projected to be near zero mandates that
some models will show increasing Prcp while others show decreasing. Ensemble medians at all four PSAs
show decreasing u (Figure 3f) and increasing q (Figure 3d) and Tmean (Figure 3c). Increasing ensemble med-
ian Rd was found at South Coast and Mid Coast, with decreases found at Northern Sierra and Humboldt
Basin (Figure 3e), although the results are distributed around zero in the individual ensemble members.
Other seasons show similar results for ET0 and the drivers (not shown).

These tendencies are elucidated in the sensitivity experiments for autumn ET0 using ACCESS1‐0 (Figure 4),
which has ET0 changes near the middle of the ensemble distribution. In all regions Tmean contributes the
most to ET0 changes. The tendency from warming Tmean exceeds the actual ET0 anomaly since there is an
opposite tendency from increasing q. Projected q increases arise from increasing Tmean, but this sensitivity

Figure 3. Autumn late century LOCA RCP 8.5 changes in (a) ET0, (b) Prcp, (c) Tmean, (d) q, (e) Rd, and (f) u at four PSAs.
In each panel the first column of dots is South Coast (SC‐CA), second column is Mid Coast (MCTM‐CA), third column
is Northern Sierra (NS‐CA), and fourth column is Humboldt Basin (HUM‐NV). Gray dots show LOCA ensemble
members, blue dots show ensemble median, and red dots show the ACCESS1‐0 model results. ACCESS1‐0 results are
shown in Figure 4 as the ET0 change for this model is near the median for select PSAs.
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analysis cannot account for the physical feedback between the two drivers. Contributions from u and Rd

changes are much smaller than Tmean and q. Results from the other LOCA ensemble members were
similar to ACCESS1‐0, always finding Tmean to have the greatest contributions, with a smaller opposing
tendency from q (Figure S7) and minimal impact from u and Rd. All other seasons have the greatest
contributions from Tmean to the total ET0 anomaly with notably smaller relative q contributions in
summer compared to autumn (not shown).

3.2. Observed and Projected Changes in Extreme Fire Danger Based on the EDDI

The number of summer and autumn days with 2‐week EDDI above the historical (1979–2019) 95th percen-
tile value (EDDI95) for each PSA are shown in Figure 5. Based on the 95th percentile statistic we should
expect on average 4 days per year, per season above that threshold. Least‐squares regressions indicate statis-
tically significant (p < 0.1) increasing trends for Northern Sierra in summer and for South Coast, Mid Coast,
and Northern Sierra in autumn. Notable for summer is themaximum counts (22 days) at Mid Coast occurred
in 2018 when one of California's largest recorded wildfire complexes occurred—the Mendocino Complex
(Figure 5c). For Northern Sierra summer far more consecutive years with EDDI95 counts above zero are
found starting in 2000 (Figure 5e). During autumn, the highest day count (31 days) at Mid Coast occurred
in 2019 (Figure 5d). Similarly, Northern Sierra also experienced its greatest autumn day count (25 days) in
2019, and 14 days were observed in 2018 when the Camp Fire occurred, the most destructive wildfire in
California's history. Fewer EDDI95 days have occurred at Humboldt Basin in recent years with zero summer
counts from 2017 to 2019 (Figure 5g) and zero autumn counts from 2015 to 2019 (Figure 5h).

Figure 4. Autumn ET0 anomaly and contributions from the four atmospheric drivers averaged over late century
(2070–2099) from LOCA RCP 8.5 ACCESS1‐0 at (a) South Coast, (b) Mid Coast, (c) Northern Sierra, and (d) Humboldt
Basin. Anomalies were computed using the 1950–2019 base period.
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LOCA projected change in the average number of summer and autumn EDDI95 days per year in each future
period is shown in Figure 6 for RCP 8.5 (Figure S8 RCP 4.5). Using the 1950–2019 LOCA baseline one would
expect on average 5 days per year, per season above the 95th percentile. Note this is slightly different than the
expected value of 4 days per year for gridMET in Figure 5 since the base periods are different. Increases in
EDDI95 days in summer and autumn are projected during the 21st century. Model medians project 30–48
summer EDDI95 days per year and 23–26 autumn EDDI95 days per year by late century, representing on
average an eightfold and fivefold increase over baseline conditions, respectively. By late century the seasonal
difference in day counts is particularly large at the South Coast and Northern Sierra regions. At the South
Coast, the late century summer median day count is 47 compared to 26 days in autumn (Figure 6a), and
at the Northern Sierra summer median day count is 52 compared to 23 days in autumn (Figure 6c). These
results indicate a high likelihood of substantially more extreme 2‐week EDDI days in summer and autumn
relative to the base period which will contribute to more high fire danger days.

3.3. Observed and Projected Changes in Multiyear Droughts

Historical timeseries of SPI‐36 and SPEI‐36 for 1904–2018 at each PSA are shown in Figure 7. Similar pro-
longed drought periods are identified by SPEI and SPI but with differences in severity. In the 1950s SPI‐36
shows more extreme values than SPEI‐36, while in the mid‐1990s onward the situation is reversed, with
SPEI‐36 showing more extreme values. In each region SPI‐36 shows the lowest values not occurring during
the 2012–2016 drought period, while SPEI‐36 shows the lowest values during the 2012–2016 drought period

Figure 5. Historical (1979–2019) gridMET total counts of daily 2‐week EDDI exceeding the 95th percentile value for (left
column) summer and (right column) autumn at (a, b) South Coast, (c, d) Mid Coast, (e, f) Northern Sierra, and (g, h)
Humboldt Basin. Red line in each panel shows the least square regression. Trends are reported in days per decade
over the 41‐year period.
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everywhere except Mid Coast (Figure 7b), highlighting the exacerbated drought severity from recent warm-
ing and increased ET0.

Consecutive drought years are more harmful to ecosystems and water infrastructure than isolated years. At
South Coast (Figure 7a) all SPEI‐36 values <fifth percentile occurred between 2008 and 2018 with two con-
secutive years during 2008–2009 and three consecutive years for both SPEI and SPI—the only 3‐year period
—during 2014–2016. Two consecutive years also occurred 2014–2015 in the Northern Sierra region
(Figure 7c). Note that the aggregation window of 36 months makes consecutive years below the fifth percen-
tile more likely.

The fraction of years for each future period with 36‐month SPI and SPEI less than the historical fifth percen-
tile value (SPI5 and SPEI5, respectively) at each PSA is shown in Figure 8 (Figure S9 RCP 4.5). SPEI5 was

Figure 6. Projected early century (2020–2039), mid century (2040–2069), and late century (2070–2099) RCP 8.5 changes
in summer and autumn daily 2‐week EDDI exceeding the 95th percentile at (a) South Coast PSA, (b) Mid Coast PSA,
(c) Northern Sierra PSA, and (d) Humboldt Basin PSA. Number of seasonal days (n = 91 for autumn) above the 95th
percentile is computed for each year and then averaged over each future period. Open circles and triangles indicate
LOCA ensemble members for summer and autumn, respectively, and filled circles and triangles are the ensemble
medians for summer and autumn, respectively. Black dashed line indicates the baseline or expected number of days per
years for the 1950–2019 baseline period, orange dashed line shows 2× the baseline, dark red dashed line shows 5× the
baseline, and magenta dashed line shows 10× the baseline.
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found to generally increase through the 21st century with late century ensemble medians ranging from 17%
to 73% with South Coast and Humboldt Basin having notably higher SPEI5 compared to Mid Coast and
Northern Sierra. Far more limited changes were found in SPI5. Distinctly large gaps between ensemble
median SPI5 and SPEI5 were found for late century at South Coast and Humboldt Basin. Much smaller
differences between SPEI5 and SPI5 were found at Mid Coast to Mendocino and Northern Sierra even for
late century, although SPEI5 almost always exceeded SPI5, and late century SPEI5 was still notable at 23%
and 17% for Mid Coast to Mendocino and Northern Sierra ensemble medians, respectively. The more arid
climate of South Coast and Humboldt Basin, where the Prcp − ET0 balance is dominated by ET0, and the
large future changes in ET0 relative to Prcp at these locations result in far greater changes in SPEI5
compared to SPI5.

To further examine future changes in multiyear droughts the timeseries of SPEI5 and SPI5 for the South
Coast is shown in Figure 9, and we summarize the late century counts (total numbers of values for a given
period), events where an event is defined as two or more years in a row below the fifth percentile, and aver-
age duration of those events in Table 2 (early and mid century numbers shown in Tables S1 and S2, respec-
tively). Minimal changes are found in early century SPEI5 counts (Table S1), but by mid century a sharp

Figure 7. Historical 36‐month SPI (green) and SPEI (orange) for the period 1904–2018 at (a) South Coast, (b) Mid Coast,
(c) Northern Sierra, and (d) Humboldt Basin. Dashed gray line shows the 5th percentile. Precipitation and ET0 data
from Williams et al. (2020).
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increase can be seen in Figure 9a (Table S2) starting around 2040 for most of the LOCA ensemble members.
For SPI5 (Figure 9b) far fewer long duration events were found. However, several ensemble members do
indicate increases in both SPI5 counts and duration of events by late century.

4. Discussion

Consistent with recent studies investigating future changes in California Prcp variability and extremes (e.g.,
Gershunov et al., 2019; Pierce et al., 2013; Swain et al., 2018), we find projected increases in total Prcp during
winter and decreases during the shoulder seasons of spring and autumn for much of California. For the less
studied Nevada, similar patterns of Prcp change are found, but those for spring and autumn also show
increases for the northern (particularly the northeast) part of the state. For ET0, our analysis contributes
to new insight on the magnitude of change and spatial patterns at seasonal timescales based on high resolu-
tion projections.

Figure 8. Projected RCP 8.5 changes in extreme multiyear droughts based on a fraction of years when 36‐month SPI and
36‐month SPEI ending September 30 (end of water year) is below the fifth percentile for (a) South Coast, (b) Mid
Coast, (c) Northern Sierra, and (d) Humboldt Basin. Open circles and triangles indicate LOCA ensemble members for SPI
and SPEI, respectively, and filled circles and triangles are the ensemble medians for SPI and SPEI, respectively.
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Seasonal changes in ET0 strongly reflect warming Tmean with steady increases through the end of the 21st
century. This is in contrast to steadily increasing q which give a tendency towards decreasing ET0. A sensi-
tivity experiment revealed the strong increases in future ET0 are driven predominantly by increasing Tmean.
Influences from qwere also evident, though not as strong as Tmean influences, and the main impact of qwas
limiting further increasing ET0, a compensating effect that could not be seen by simply looking at the future
ET0 trends. This further adds to the literature on the importance of using physically based E0 over simple
temperature‐based approaches, which in this case would have misrepresented the partially compensating
tendencies due to Tmean and q. Another consideration is whether the sensitivity of ET0 to the drivers might
change in the future, which could be found by repeating the work of Hobbins (2016) but using future clima-
tology periods instead of past.

Figure 9. LOCA historical and future RCP 8.5 timeseries of extreme (<fifth percentile relative to 1950–2019 base period)
36‐month (a) SPEI and (b) SPI at the South Coast PSA. Individual years below the extreme threshold are represented by
single red bars.

Table 2
LOCA South Coast Late Century 36‐Month SPEI and SPI Statistics for Values Less Than the Fifth Percentile

SPEI‐36 late century <fifth percentile stats

Counts (n = 30) Fraction of years Events
Average duration

(years)

ACCESS1‐0 28 0.93 1 28
CNRM‐CM5 5 0.17 4 1
CanESM2 7 0.23 2 4
GFDL‐CM3 24 0.80 5 5
HadGEM2‐CC 25 0.83 3 8
HadGEM2‐ES 17 0.57 6 3
MIROC5 20 0.67 5 4
SPI‐36 late century <fifth percentile stats

Counts (n = 30) Fraction of years Events Average duration (years)
ACCESS1‐0 7 0.23 3 2
CNRM‐CM5 0 0 0 0
CanESM2 0 0 0 0
GFDL‐CM3 1 0.03 1 1
HadGEM2‐CC 9 0.30 4 2
HadGEM2‐ES 1 0.03 1 1
MIROC5 6 0.20 5 1

Note. An event is defined as two or more years in a row below the fifth percentile.
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Considering first 2‐week EDDI, recent years with high counts of EDDI95 days at Mid Coast and Northern
Sierra occurred during the same years with the largest and most destructive wildfires in California's history
prior to 2020 (Calfire, 2020a, 2020b), which agrees with the uptick in extreme fire danger found by Goss
et al. (2020). In other cases and regions large fires did occur in years with low number of EDDI95 days (or
zero), which indicates that fires can occur without short‐term excess in ET0 especially when factors other
than short‐term climate play a key role in the fire potential and spread. In general for California and
Nevada, especially in summer and autumn, if extended periods of elevated ET0 occur simultaneously with
Prcp deficits the fire danger will increase.

By late century and relative to the historical baseline ensemble median EDDI95 days were found to increase
6–10 times in summer and 4–6 times in autumn, which is a much larger increase in extreme days compared
to the doubling of autumn days with Fire Weather Index (FWI) values exceeding the 95th percentile by Goss
et al. (2020). The FWI is part of the Canadian fire danger system and considers both fire weather and aridity
of fuels (Goss et al., 2020). The FWI and EDDI represent different aspects of fire danger with EDDI95 day
counts representing more of a sustained high fire potential over time compared to the shorter weather time-
scales incorporated into FWI. In autumn, the average number of days per year with EDDI95 by late century is
similar to those during destructive 2017 and 2018 autumn fire seasons in northern California regions.
However in summer, the median counts far exceed anything found in the observed period used in this study,
with the greatest spread between summer and autumn found at South Coast and Northern Sierra. Greater
EDDI95 counts in summer compared to autumn could be a result of ET0 being less sensitive to q during sum-
mer and more sensitive to Tmean which allows for further increased ET0. This analysis is not sensitive to
EDDI timescale as similar results were found using both 1‐ and 3‐month EDDI95 days (Figures S10 and S11).

Turning towards the longer timescales, regional differences in 36‐month SPI versus SPEI projections
in multiyear droughts can be mostly attributed to how water limited regional hydroclimates are
(e.g., Vicente‐Serrano et al., 2015). At Mid Coast and Northern Sierra there is a close balance between aver-
age water year total Prcp and ET0 (less water limited) while at South Coast and Humboldt Basin water year
total ET0 far exceeds Prcp. With winter Prcp projected to increase (when most of the water year precipitation
falls) and ET0 also projected to increase, the wetting (Prcp) and drying (ET0) tend to continue to balance in
less water‐limited regions. At more water‐limited locations, increased drying is projected (far more extreme
droughts in 36‐month SPEI than 36‐month SPI) as ET0 already dominates the Prcp‐ET0 balance. For South
Coast, a shift towards an even more water‐limited regime is projected due to substantial decreases in spring
and autumn Prcp (20–40%) combined with increased ET0 that will further expand the imbalance between
the two. Our results suggest that more multiyear droughts like the recent 2012–2016 drought will be found
in the future, when evenmodest Prcp deficits are exacerbated through increased ET0 and land surface drying
(Shukla et al., 2015; Williams et al., 2015).

Increased frequency of extreme multiyear droughts (36‐month SPEI) by the end of the century, even at Mid
Coast and Northern Sierra, could further increase short‐term, seasonal fire danger. Long‐term droughts can
degrade forests and other ecosystems; however, regional responses can vary substantially. Dong et al. (2019)
found major declines in vegetation greenness for southern California in response to the 2012–2016 drought
but increases in greenness in northern California and high elevations of the Sierra Nevada. In places where
vegetation health decreases, fire danger will increase due to lower fuel moisture and higher flammability.
These long‐term drought impacts coupled with more extreme 2‐week EDDI days and decreasing autumn
Prcp will further increase fire danger during the autumn.

One uncertainty is the role of increasing carbon dioxide (CO2) on plant physiology and how that could
change ET0. Some argue that increasing CO2 will increase vegetation surface resistance and decrease plant
water use, and using a fixed surface resistance for E0 (such as the ET0 used in this study) might overestimate
future ET0 and related drought impacts (e.g., Milly & Dunne, 2016, 2017; Roderick et al., 2015; Swann
et al., 2016; Yang et al., 2019). Simple adjustments can be applied to surface resistance in the ET0 equation
based on projected CO2 values (Yang et al., 2019). Vicente‐Serrano et al. (2020) show that globally, when ET0
is adjusted for rising CO2, annual values are reduced, but the trend is still increasing for both RCP 4.5 and
8.5. For California and Nevada, the same holds true with increasing ET0 for both CO2‐adjusted (based on
Yang et al., 2019) and unadjusted estimates (Figure S12). Although we acknowledge this concern, experi-
ments on actual vegetative responses to elevated CO2 find minimal or no drought reducing effects on
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various types of vegetation and ecosystems (e.g., Bachofen et al., 2018; Birami et al., 2020; Dikšaitytė
et al., 2019; Duan et al., 2014; Jiang et al., 2020; Nackley et al., 2018). Furthermore, the 2012–2016 extreme
hot drought in California and Nevada, intensified by CO2 driven warming (e.g., Shukla et al., 2015; Williams
et al., 2015), resulted in major declines in vegetative health for parts of California (Dong et al., 2019) further
calling into question whether future CO2 increases will mitigate drying, drought, and fire danger.

Based on a seven‐member LOCA downscaled GCM ensemble we show that for California and Nevada, ET0
will steadily increase through the end of century for all seasons under both RCP 8.5 and 4.5 (Figure S5) sce-
narios. This will stress native ecosystems, increase fire danger, negatively impact agriculture where water
demands cannot be met, and exacerbate impacts to society during periods of prolonged dryness. Projected
Prcp changes vary with region and season, with notable increases during winter (whole region) and autumn
(central and northern Nevada). During these seasons at these locations, a combination of increasing ET0 and
increasing Prcp confounds fire danger signals; in that case, the timing of individual Prcp events and atmo-
spheric drying events (e.g., heat waves and Santa Ana winds) might play the greatest role in determining fire
potential. Conversely, in most of California a clear signal of increased fire potential is expected during
autumn with projected increases in ET0 and decreases in Prcp.

The future projections of ET0 discussed here expand our understanding of possible drought and wildfire
potential in California and Nevada, providing resource managers with amore holistic view of possible future
scenarios. The regional differences revealed in this analysis demonstrate how future drying may vary across
California and Nevada and the need for regionally focused climate change impact and adaptation assess-
ment. Similar analysis could easily be applied to other areas around the globe, where drought and wildfire
have significant impacts, to gain more insight into future changes in ET0 and climatic water balance compo-
nents at regionally applicable timescales.
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